Files
wakapi-readme-stats/make_bar_graph.py
2020-07-28 00:48:25 +05:30

107 lines
3.1 KiB
Python

import pandas as pd
import numpy as np
import altair as alt
import json
# npm install vega-lite vega-cli canvas
class BarGraph:
def __init__(self, yearly_data):
self.yearly_data=yearly_data
def build_graph(self):
with open('colors.json') as f:
colors = json.load(f)
allColorsValues=[]
#filter data
max_languages=5
top_languages={}
for year in self.yearly_data.keys():
for quarter in self.yearly_data[year].keys():
for language in sorted(list(self.yearly_data[year][quarter].keys()), key=lambda lang:self.yearly_data[year][quarter][lang], reverse=True)[0:max_languages]:
if 'top' not in self.yearly_data[year][quarter]:
self.yearly_data[year][quarter]['top']={}
if self.yearly_data[year][quarter][language]!=0:
self.yearly_data[year][quarter]['top'][language]=self.yearly_data[year][quarter][language]
if language not in top_languages:
top_languages[language] =1
top_languages[language]+=1
# print(self.yearly_data)
all_languages=list(top_languages.keys())
for language in all_languages:
if colors[language]['color'] is not None:
allColorsValues.append(colors[language]['color'])
languages_all_loc={}
for language in all_languages:
language_year=[]
for year in self.yearly_data.keys():
language_quarter=[0,0,0]
for quarter in self.yearly_data[year].keys():
if language in self.yearly_data[year][quarter]['top']:
language_quarter[quarter-1]=self.yearly_data[year][quarter]['top'][language]
else:
language_quarter[quarter-1]=0
language_year.append(language_quarter)
languages_all_loc[language]=language_year
print(languages_all_loc)
language_df={}
def prep_df(df, name):
df = df.stack().reset_index()
df.columns = ['c1', 'c2', 'values']
df['Language'] = name
return df
for language in languages_all_loc.keys():
language_df[language]=pd.DataFrame(languages_all_loc[language],index=list(self.yearly_data.keys()),columns=["Q1","Q2","Q3"])
for language in language_df.keys():
language_df[language]=prep_df(language_df[language], language)
df=pd.concat(list(language_df.values()))
# print(df)
chart=alt.Chart(df).mark_bar().encode(
# tell Altair which field to group columns on
x=alt.X('c2:N', title=None),
# tell Altair which field to use as Y values and how to calculate
y=alt.Y('sum(values):Q',
axis=alt.Axis(
grid=False,
title='LOC added')),
# tell Altair which field to use to use as the set of columns to be represented in each group
column=alt.Column('c1:N', title=None),
# tell Altair which field to use for color segmentation
color=alt.Color('Language:N',
scale=alt.Scale(
domain=all_languages,
# make it look pretty with an enjoyable color pallet
range=allColorsValues,
),
))\
.configure_view(
# remove grid lines around column clusters
strokeOpacity=0
)
chart.save('bar_graph.png')
return 'bar_graph.png'