Bar graph added.

This commit is contained in:
prabhatdev
2020-07-28 00:48:25 +05:30
parent d0a6e2667d
commit 194b41124d
3468 changed files with 640611 additions and 169 deletions

27
node_modules/vega-regression/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,27 @@
Copyright (c) 2015-2018, University of Washington Interactive Data Lab
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

8
node_modules/vega-regression/README.md generated vendored Normal file
View File

@@ -0,0 +1,8 @@
# vega-regression
Regression model fitting for Vega dataflows.
This package provides the following Vega data transforms:
- [**Loess**](https://vega.github.io/vega/docs/transforms/loess/) [<>](https://github.com/vega/vega/blob/master/packages/vega-regression/src/Loess.js "Source")
- [**Regression**](https://vega.github.io/vega/docs/transforms/regression/) [<>](https://github.com/vega/vega/blob/master/packages/vega-regression/src/Regression.js "Source")

212
node_modules/vega-regression/build/vega-regression.js generated vendored Normal file
View File

@@ -0,0 +1,212 @@
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('vega-statistics'), require('vega-dataflow'), require('vega-util')) :
typeof define === 'function' && define.amd ? define(['exports', 'vega-statistics', 'vega-dataflow', 'vega-util'], factory) :
(global = global || self, factory((global.vega = global.vega || {}, global.vega.transforms = {}), global.vega, global.vega, global.vega));
}(this, (function (exports, vegaStatistics, vegaDataflow, vegaUtil) { 'use strict';
function partition(data, groupby) {
var groups = [],
get = function(f) { return f(t); },
map, i, n, t, k, g;
// partition data points into stack groups
if (groupby == null) {
groups.push(data);
} else {
for (map={}, i=0, n=data.length; i<n; ++i) {
t = data[i];
k = groupby.map(get);
g = map[k];
if (!g) {
map[k] = (g = []);
g.dims = k;
groups.push(g);
}
g.push(t);
}
}
return groups;
}
/**
* Compute locally-weighted regression fits for one or more data groups.
* @constructor
* @param {object} params - The parameters for this operator.
* @param {function(object): *} params.x - An accessor for the predictor data field.
* @param {function(object): *} params.y - An accessor for the predicted data field.
* @param {Array<function(object): *>} [params.groupby] - An array of accessors to groupby.
* @param {number} [params.bandwidth=0.3] - The loess bandwidth.
*/
function Loess(params) {
vegaDataflow.Transform.call(this, null, params);
}
Loess.Definition = {
'type': 'Loess',
'metadata': {'generates': true},
'params': [
{ 'name': 'x', 'type': 'field', 'required': true },
{ 'name': 'y', 'type': 'field', 'required': true },
{ 'name': 'groupby', 'type': 'field', 'array': true },
{ 'name': 'bandwidth', 'type': 'number', 'default': 0.3 },
{ 'name': 'as', 'type': 'string', 'array': true }
]
};
var prototype = vegaUtil.inherits(Loess, vegaDataflow.Transform);
prototype.transform = function(_, pulse) {
var out = pulse.fork(pulse.NO_SOURCE | pulse.NO_FIELDS);
if (!this.value || pulse.changed() || _.modified()) {
const source = pulse.materialize(pulse.SOURCE).source,
groups = partition(source, _.groupby),
names = (_.groupby || []).map(vegaUtil.accessorName),
m = names.length,
as = _.as || [vegaUtil.accessorName(_.x), vegaUtil.accessorName(_.y)],
values = [];
groups.forEach(g => {
vegaStatistics.regressionLoess(g, _.x, _.y, _.bandwidth || 0.3).forEach(p => {
const t = {};
for (let i=0; i<m; ++i) {
t[names[i]] = g.dims[i];
}
t[as[0]] = p[0];
t[as[1]] = p[1];
values.push(vegaDataflow.ingest(t));
});
});
if (this.value) out.rem = this.value;
this.value = out.add = out.source = values;
}
return out;
};
const Methods = {
linear: vegaStatistics.regressionLinear,
log: vegaStatistics.regressionLog,
exp: vegaStatistics.regressionExp,
pow: vegaStatistics.regressionPow,
quad: vegaStatistics.regressionQuad,
poly: vegaStatistics.regressionPoly
};
function degreesOfFreedom(method, order) {
return method === 'poly' ? order : method === 'quad' ? 2 : 1;
}
/**
* Compute regression fits for one or more data groups.
* @constructor
* @param {object} params - The parameters for this operator.
* @param {function(object): *} params.x - An accessor for the predictor data field.
* @param {function(object): *} params.y - An accessor for the predicted data field.
* @param {string} [params.method='linear'] - The regression method to apply.
* @param {Array<function(object): *>} [params.groupby] - An array of accessors to groupby.
* @param {Array<number>} [params.extent] - The domain extent over which to plot the regression line.
* @param {number} [params.order=3] - The polynomial order. Only applies to the 'poly' method.
*/
function Regression(params) {
vegaDataflow.Transform.call(this, null, params);
}
Regression.Definition = {
'type': 'Regression',
'metadata': {'generates': true},
'params': [
{ 'name': 'x', 'type': 'field', 'required': true },
{ 'name': 'y', 'type': 'field', 'required': true },
{ 'name': 'groupby', 'type': 'field', 'array': true },
{ 'name': 'method', 'type': 'string', 'default': 'linear', 'values': Object.keys(Methods) },
{ 'name': 'order', 'type': 'number', 'default': 3 },
{ 'name': 'extent', 'type': 'number', 'array': true, 'length': 2 },
{ 'name': 'params', 'type': 'boolean', 'default': false },
{ 'name': 'as', 'type': 'string', 'array': true }
]
};
var prototype$1 = vegaUtil.inherits(Regression, vegaDataflow.Transform);
prototype$1.transform = function(_, pulse) {
var out = pulse.fork(pulse.NO_SOURCE | pulse.NO_FIELDS);
if (!this.value || pulse.changed() || _.modified()) {
const source = pulse.materialize(pulse.SOURCE).source,
groups = partition(source, _.groupby),
names = (_.groupby || []).map(vegaUtil.accessorName),
method = _.method || 'linear',
order = _.order || 3,
dof = degreesOfFreedom(method, order),
as = _.as || [vegaUtil.accessorName(_.x), vegaUtil.accessorName(_.y)],
fit = Methods[method],
values = [];
let domain = _.extent;
if (!vegaUtil.hasOwnProperty(Methods, method)) {
vegaUtil.error('Invalid regression method: ' + method);
}
if (domain != null) {
if (method === 'log' && domain[0] <= 0) {
pulse.dataflow.warn('Ignoring extent with values <= 0 for log regression.');
domain = null;
}
}
groups.forEach(g => {
const n = g.length;
if (n <= dof) {
pulse.dataflow.warn('Skipping regression with more parameters than data points.');
return;
}
const model = fit(g, _.x, _.y, order);
if (_.params) {
// if parameter vectors requested return those
values.push(vegaDataflow.ingest({
keys: g.dims,
coef: model.coef,
rSquared: model.rSquared
}));
return;
}
const dom = domain || vegaUtil.extent(g, _.x),
add = p => {
const t = {};
for (let i=0; i<names.length; ++i) {
t[names[i]] = g.dims[i];
}
t[as[0]] = p[0];
t[as[1]] = p[1];
values.push(vegaDataflow.ingest(t));
};
if (method === 'linear') {
// for linear regression we only need the end points
dom.forEach(x => add([x, model.predict(x)]));
} else {
// otherwise return trend line sample points
vegaStatistics.sampleCurve(model.predict, dom, 25, 200).forEach(add);
}
});
if (this.value) out.rem = this.value;
this.value = out.add = out.source = values;
}
return out;
};
exports.loess = Loess;
exports.regression = Regression;
Object.defineProperty(exports, '__esModule', { value: true });
})));

View File

@@ -0,0 +1 @@
!function(e,r){"object"==typeof exports&&"undefined"!=typeof module?r(exports,require("vega-statistics"),require("vega-dataflow"),require("vega-util")):"function"==typeof define&&define.amd?define(["exports","vega-statistics","vega-dataflow","vega-util"],r):r(((e=e||self).vega=e.vega||{},e.vega.transforms={}),e.vega,e.vega,e.vega)}(this,(function(e,r,a,t){"use strict";function n(e,r){var a,t,n,s,i,o,u=[],l=function(e){return e(s)};if(null==r)u.push(e);else for(a={},t=0,n=e.length;t<n;++t)s=e[t],(o=a[i=r.map(l)])||(a[i]=o=[],o.dims=i,u.push(o)),o.push(s);return u}function s(e){a.Transform.call(this,null,e)}s.Definition={type:"Loess",metadata:{generates:!0},params:[{name:"x",type:"field",required:!0},{name:"y",type:"field",required:!0},{name:"groupby",type:"field",array:!0},{name:"bandwidth",type:"number",default:.3},{name:"as",type:"string",array:!0}]},t.inherits(s,a.Transform).transform=function(e,s){var i=s.fork(s.NO_SOURCE|s.NO_FIELDS);if(!this.value||s.changed()||e.modified()){const o=n(s.materialize(s.SOURCE).source,e.groupby),u=(e.groupby||[]).map(t.accessorName),l=u.length,d=e.as||[t.accessorName(e.x),t.accessorName(e.y)],f=[];o.forEach(t=>{r.regressionLoess(t,e.x,e.y,e.bandwidth||.3).forEach(e=>{const r={};for(let e=0;e<l;++e)r[u[e]]=t.dims[e];r[d[0]]=e[0],r[d[1]]=e[1],f.push(a.ingest(r))})}),this.value&&(i.rem=this.value),this.value=i.add=i.source=f}return i};const i={linear:r.regressionLinear,log:r.regressionLog,exp:r.regressionExp,pow:r.regressionPow,quad:r.regressionQuad,poly:r.regressionPoly};function o(e){a.Transform.call(this,null,e)}o.Definition={type:"Regression",metadata:{generates:!0},params:[{name:"x",type:"field",required:!0},{name:"y",type:"field",required:!0},{name:"groupby",type:"field",array:!0},{name:"method",type:"string",default:"linear",values:Object.keys(i)},{name:"order",type:"number",default:3},{name:"extent",type:"number",array:!0,length:2},{name:"params",type:"boolean",default:!1},{name:"as",type:"string",array:!0}]},t.inherits(o,a.Transform).transform=function(e,s){var o=s.fork(s.NO_SOURCE|s.NO_FIELDS);if(!this.value||s.changed()||e.modified()){const u=n(s.materialize(s.SOURCE).source,e.groupby),l=(e.groupby||[]).map(t.accessorName),d=e.method||"linear",f=e.order||3,m=function(e,r){return"poly"===e?r:"quad"===e?2:1}(d,f),p=e.as||[t.accessorName(e.x),t.accessorName(e.y)],c=i[d],g=[];let y=e.extent;t.hasOwnProperty(i,d)||t.error("Invalid regression method: "+d),null!=y&&"log"===d&&y[0]<=0&&(s.dataflow.warn("Ignoring extent with values <= 0 for log regression."),y=null),u.forEach(n=>{if(n.length<=m)return void s.dataflow.warn("Skipping regression with more parameters than data points.");const i=c(n,e.x,e.y,f);if(e.params)return void g.push(a.ingest({keys:n.dims,coef:i.coef,rSquared:i.rSquared}));const o=y||t.extent(n,e.x),u=e=>{const r={};for(let e=0;e<l.length;++e)r[l[e]]=n.dims[e];r[p[0]]=e[0],r[p[1]]=e[1],g.push(a.ingest(r))};"linear"===d?o.forEach(e=>u([e,i.predict(e)])):r.sampleCurve(i.predict,o,25,200).forEach(u)}),this.value&&(o.rem=this.value),this.value=o.add=o.source=g}return o},e.loess=s,e.regression=o,Object.defineProperty(e,"__esModule",{value:!0})}));

2
node_modules/vega-regression/index.js generated vendored Normal file
View File

@@ -0,0 +1,2 @@
export {default as loess} from './src/Loess';
export {default as regression} from './src/Regression';

70
node_modules/vega-regression/package.json generated vendored Normal file
View File

@@ -0,0 +1,70 @@
{
"_from": "vega-regression@~1.0.6",
"_id": "vega-regression@1.0.6",
"_inBundle": false,
"_integrity": "sha512-s4kjsKp23WvDJDHkpIrGNUaLI3/95k6nTURj9RDtM4C6CbUgO2snIaEfki4JfOCnBYtvotwDuZgXKmJInu9hVw==",
"_location": "/vega-regression",
"_phantomChildren": {},
"_requested": {
"type": "range",
"registry": true,
"raw": "vega-regression@~1.0.6",
"name": "vega-regression",
"escapedName": "vega-regression",
"rawSpec": "~1.0.6",
"saveSpec": null,
"fetchSpec": "~1.0.6"
},
"_requiredBy": [
"/vega"
],
"_resolved": "https://registry.npmjs.org/vega-regression/-/vega-regression-1.0.6.tgz",
"_shasum": "0081a91328e933c826813c06afe7041915532d4f",
"_spec": "vega-regression@~1.0.6",
"_where": "/home/prabhatdev/Documents/opensource/gitHubStats/waka-readme-stats/node_modules/vega",
"author": {
"name": "Jeffrey Heer",
"url": "http://idl.cs.washington.edu"
},
"bugs": {
"url": "https://github.com/vega/vega/issues"
},
"bundleDependencies": false,
"dependencies": {
"d3-array": "^2.4.0",
"vega-dataflow": "^5.5.1",
"vega-statistics": "^1.7.4",
"vega-util": "^1.13.2"
},
"deprecated": false,
"description": "Regression transform for Vega dataflows.",
"devDependencies": {
"vega-transforms": "*"
},
"gitHead": "35e31c5c6b54db9dc3a577b5adad8d15ec274d32",
"homepage": "https://github.com/vega/vega#readme",
"keywords": [
"vega",
"regression",
"loess"
],
"license": "BSD-3-Clause",
"main": "build/vega-regression.js",
"module": "index",
"name": "vega-regression",
"repository": {
"type": "git",
"url": "git+https://github.com/vega/vega.git"
},
"scripts": {
"build": "yarn rollup",
"postbuild": "terser build/vega-regression.js -c -m -o build/vega-regression.min.js",
"postpublish": "git push && git push --tags",
"prebuild": "rimraf build && mkdir build",
"prepublishOnly": "yarn test && yarn build",
"pretest": "yarn prebuild && yarn rollup",
"rollup": "rollup -g d3-array:d3,vega-dataflow:vega,vega-statistics:vega,vega-util:vega -f umd -n vega.transforms -o build/vega-regression.js -- index.js",
"test": "tape 'test/**/*-test.js'"
},
"version": "1.0.6"
}

61
node_modules/vega-regression/src/Loess.js generated vendored Normal file
View File

@@ -0,0 +1,61 @@
import partition from './partition';
import {regressionLoess} from 'vega-statistics';
import {Transform, ingest} from 'vega-dataflow';
import {accessorName, inherits} from 'vega-util';
/**
* Compute locally-weighted regression fits for one or more data groups.
* @constructor
* @param {object} params - The parameters for this operator.
* @param {function(object): *} params.x - An accessor for the predictor data field.
* @param {function(object): *} params.y - An accessor for the predicted data field.
* @param {Array<function(object): *>} [params.groupby] - An array of accessors to groupby.
* @param {number} [params.bandwidth=0.3] - The loess bandwidth.
*/
export default function Loess(params) {
Transform.call(this, null, params);
}
Loess.Definition = {
'type': 'Loess',
'metadata': {'generates': true},
'params': [
{ 'name': 'x', 'type': 'field', 'required': true },
{ 'name': 'y', 'type': 'field', 'required': true },
{ 'name': 'groupby', 'type': 'field', 'array': true },
{ 'name': 'bandwidth', 'type': 'number', 'default': 0.3 },
{ 'name': 'as', 'type': 'string', 'array': true }
]
};
var prototype = inherits(Loess, Transform);
prototype.transform = function(_, pulse) {
var out = pulse.fork(pulse.NO_SOURCE | pulse.NO_FIELDS);
if (!this.value || pulse.changed() || _.modified()) {
const source = pulse.materialize(pulse.SOURCE).source,
groups = partition(source, _.groupby),
names = (_.groupby || []).map(accessorName),
m = names.length,
as = _.as || [accessorName(_.x), accessorName(_.y)],
values = [];
groups.forEach(g => {
regressionLoess(g, _.x, _.y, _.bandwidth || 0.3).forEach(p => {
const t = {};
for (let i=0; i<m; ++i) {
t[names[i]] = g.dims[i];
}
t[as[0]] = p[0];
t[as[1]] = p[1];
values.push(ingest(t));
});
});
if (this.value) out.rem = this.value;
this.value = out.add = out.source = values;
}
return out;
};

125
node_modules/vega-regression/src/Regression.js generated vendored Normal file
View File

@@ -0,0 +1,125 @@
import partition from './partition';
import {Transform, ingest} from 'vega-dataflow';
import {
regressionExp, regressionLinear, regressionLog,
regressionPoly, regressionPow, regressionQuad, sampleCurve
} from 'vega-statistics';
import {accessorName, error, extent, hasOwnProperty, inherits} from 'vega-util';
const Methods = {
linear: regressionLinear,
log: regressionLog,
exp: regressionExp,
pow: regressionPow,
quad: regressionQuad,
poly: regressionPoly
};
function degreesOfFreedom(method, order) {
return method === 'poly' ? order : method === 'quad' ? 2 : 1;
}
/**
* Compute regression fits for one or more data groups.
* @constructor
* @param {object} params - The parameters for this operator.
* @param {function(object): *} params.x - An accessor for the predictor data field.
* @param {function(object): *} params.y - An accessor for the predicted data field.
* @param {string} [params.method='linear'] - The regression method to apply.
* @param {Array<function(object): *>} [params.groupby] - An array of accessors to groupby.
* @param {Array<number>} [params.extent] - The domain extent over which to plot the regression line.
* @param {number} [params.order=3] - The polynomial order. Only applies to the 'poly' method.
*/
export default function Regression(params) {
Transform.call(this, null, params);
}
Regression.Definition = {
'type': 'Regression',
'metadata': {'generates': true},
'params': [
{ 'name': 'x', 'type': 'field', 'required': true },
{ 'name': 'y', 'type': 'field', 'required': true },
{ 'name': 'groupby', 'type': 'field', 'array': true },
{ 'name': 'method', 'type': 'string', 'default': 'linear', 'values': Object.keys(Methods) },
{ 'name': 'order', 'type': 'number', 'default': 3 },
{ 'name': 'extent', 'type': 'number', 'array': true, 'length': 2 },
{ 'name': 'params', 'type': 'boolean', 'default': false },
{ 'name': 'as', 'type': 'string', 'array': true }
]
};
var prototype = inherits(Regression, Transform);
prototype.transform = function(_, pulse) {
var out = pulse.fork(pulse.NO_SOURCE | pulse.NO_FIELDS);
if (!this.value || pulse.changed() || _.modified()) {
const source = pulse.materialize(pulse.SOURCE).source,
groups = partition(source, _.groupby),
names = (_.groupby || []).map(accessorName),
method = _.method || 'linear',
order = _.order || 3,
dof = degreesOfFreedom(method, order),
as = _.as || [accessorName(_.x), accessorName(_.y)],
fit = Methods[method],
values = [];
let domain = _.extent;
if (!hasOwnProperty(Methods, method)) {
error('Invalid regression method: ' + method);
}
if (domain != null) {
if (method === 'log' && domain[0] <= 0) {
pulse.dataflow.warn('Ignoring extent with values <= 0 for log regression.');
domain = null;
}
}
groups.forEach(g => {
const n = g.length;
if (n <= dof) {
pulse.dataflow.warn('Skipping regression with more parameters than data points.');
return;
}
const model = fit(g, _.x, _.y, order);
if (_.params) {
// if parameter vectors requested return those
values.push(ingest({
keys: g.dims,
coef: model.coef,
rSquared: model.rSquared
}));
return;
}
const dom = domain || extent(g, _.x),
add = p => {
const t = {};
for (let i=0; i<names.length; ++i) {
t[names[i]] = g.dims[i];
}
t[as[0]] = p[0];
t[as[1]] = p[1];
values.push(ingest(t));
};
if (method === 'linear') {
// for linear regression we only need the end points
dom.forEach(x => add([x, model.predict(x)]));
} else {
// otherwise return trend line sample points
sampleCurve(model.predict, dom, 25, 200).forEach(add);
}
});
if (this.value) out.rem = this.value;
this.value = out.add = out.source = values;
}
return out;
};

24
node_modules/vega-regression/src/partition.js generated vendored Normal file
View File

@@ -0,0 +1,24 @@
export default function(data, groupby) {
var groups = [],
get = function(f) { return f(t); },
map, i, n, t, k, g;
// partition data points into stack groups
if (groupby == null) {
groups.push(data);
} else {
for (map={}, i=0, n=data.length; i<n; ++i) {
t = data[i];
k = groupby.map(get);
g = map[k];
if (!g) {
map[k] = (g = []);
g.dims = k;
groups.push(g);
}
g.push(t);
}
}
return groups;
}